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Energy transfer from an inductive storage is considered for two types of systems: a dis-
connect with an intrinsic parasitic inductance for an inductive load and a purely resistive
disconnect for a resistive load. Solutions are obtained for the voltage, power, and energy
transferred to the load. The dependence of the efficiency of the device on its parameters
is established.

1. Transfer of Energy from an Inductive Storage to an Inductive Load Including the Parasitic In-
ductance of the Current Disconnect. The electrical circuit of Fig. 1 corresponds to the differential equa-
tion

Lelq + RI4 =0,

where Lg =Lg+ LLy,/(L+ L) is the equivalent inductance of the circuit (with respect to the disconnect).
Considering the initial conditions (t=0, I3,=0, I=Iq=I), we then find
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These relations are similar to the equations obtained in [1] for a purely resistive disconnect; the differ~
ence is that in the present case Lg has the additional term Ly and Qg, the additional term QLg/L. The
latter quantity is the magnetic field energy stored in the inductance of the discon-
nect at the initial time. Thus, with a parasitic inductance present in the disconnect,

i Ma |t the same fraction of the energy is transferred from the storage into the load as in
J! R/é’ L the case of a noninductive disconnect, although the disconnect process takes place

L UL in a different way. In particular, the energy absorbed by the disconnect is different;
% Ly ‘ the magnetic energy stored in the parasitic inductance is completely absorbed, in
addifion to a certain fraction of the stored energy. Because of this, the total effi-

ciency of the system is lowered. The nature of the process of energy transfer is
primarily determined by the value of the parameter A= Lelg/ 2mgq, where m; and g
are the initial mass of the disconnect and the specific energy of the electrical ex-
T I plosion. All the expressions obtained in [1] for the dimensionless quantities char-
acterizing the energy-transfer process remain valid. It should be noted that al-
though the voltage U applied to the load and disconnect has an inductive component

R AL L1}, in this case, in addition to the resistive component RI4, the expression for the
. dimensionless quantity (u=U/ Uy remains the same as that when L3=0, and only the
Fig. 2 initial value
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U=U(O)=(1 — L,/L) R, I,

is changed.

2. Energy Transfer from an Inductive Storage to a Resistive Load. First of all, we point out the
basic difference between energy transfer into an inductive load and into a purely resistive load. In the
first case, as is clear from the equations for Qg and Qg,, the value of the current in the disconnect (or
load) branch completely determines the value of the energy transferred to the load and that leff in the
storage. In particular, the energy transferred to the load for complete cutoff is determined only by the
initial conditions and does not depend on the manner in which the cutoff is accomplished in time. This en-
ergy is not changed even if the method of cutoff is itself changed, for example, by replacing electrical ex-
plosion of the current disconnect by a purely mechanical rupture. A different situation arises in the trans~
fer of energy to a purely resistive load. In this case, Q1, is not determined by the value of the current Iy,

itself but by the entire integral t(RLILZ (9)dt , i.e., it depends on the nature of the disconnect process. There-
0 . .

fore, it is impossible to determine the energy transferred to the load for total cutoff merely through the
initial conditions; it is certainly necessary to take into account the nature of the disconnect process. For
example, if instantaneous cutoff is accomplished, all the stored energy is transferred to the load. In fact,
no matter how rapidly the disconnect process occurs, the power in the disconnect is limited [it cannot ex-
ceed the value IﬁR?L/ R(t)], and therefore Qq— 0 when t—0. We now turn to a study of the electrical cir-
cuit in Fig. 2 described by the system of differential equations

Lo’ (% +Hi)—LU§—;+U:0, (2.1)
L ,
R’ =aRU?, (2.2)
where a = (mygRp) "1

Taking for the electrical explosion of a wire the model based on a surface vaporization wave [2], we
obtain ‘

R=R,(1 — Q/meg)~

where Ry, is the resistance of the disconnect at the boiling point (R=Ry, at t=0, I=I;, U=U,=LRyRy,/ Ry, +
Rp). Eliminating U from Eqgs. (2.1) and (2.2) and integrating, we obtain

R = 2R3 [‘RLZ _ iL n R GRLZIO2 RLZ }
R-EE|IR~ T "Ry 2 IRy |

We introduce the dimensionless quantities

o BBt L g ue O
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We then obtain
r“dr__ﬂik_[’L_ — ]
r=—= EE: Inr+ (4—1)n | _ (2.3)

It is then clear that r tends asymptotically to its limit r;, which is determined by the condition r'=0,
" .
lnry=n (A——1 + -E) (2.4)

Thus, an electrical explosion, in the proper sense of the word, does not occur; the resistance R is
always finite for any finite Ry, i.e., the mass of the disconnect cannot be completely vaporized. The lim-
iting value ry depends on the parameters A and ry, with the nature of this dependence being determined by
the value of A. For A<1 (low-energy mode), Eq. (2.4) indicates that

1
n<i—a

for any ry. If rp—, r;— (1—A)"1 and consequently, itis impossible in this mode to obtain a significant
increase in the resistance of the disconnect and efficient transfer of energy to the load. For A=0.5,

nry=r, —1, — 1_;(,-1 —1).
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We then obtain from Eq. (2.4)

1—‘1+A1J_,-L (2.5)

For A>1 (high-energy mode), it is clear from Eg. (2.4) that

Inry > 54 — 1)
and this means
1 - - - —_—
— <A < [(A— 1) eI
Hence, we have for an estimate of ry
r(A—1) <lnry < [(4—1) + LAY
For A=2 and r1, =1,
rl‘;él{.{—i)’

i.e., the resistance of the disconnect in this mode, although also finite, may be large for sufficiently large
rg,. I, indeed, A>1 but ry, is small so that Ary, <1, we once again obtain Eq. (2.5) for r; from Eq. (2.4).

We turn to a calculation of the voltage on the load. The greater the power or energy required to be
transferred to the load in a limited time, the steeper the rise of the voltage pulse to a maximum must be.

However, analysis shows that modes are possible where the pulse has the form of a monctonically
damped curve. In fact, at the time of maximum voltage Ty, u=upg, u'=0, r=r,, and r'=rf from Eg. (2.1).
Using Eq. (2.3), we obtain for r, the transcendental equation

1-2%(1nr,_,+1)+2(.4~1)r.2_<"2‘)2=0. (2.6)

s
It does not always have a solution (i.e., the presence of a maximum in the voltage curve is not obligatory).
We set ry=1 in Eq. (2.6) and find the correspondmg value of ry =r,. (where r,. is the critical value of the
load resistance). It is clear that Eq. (2.6) does not have a solutlon for small ry, since r, cannot be less
than one. We find for rop

1 1
for = m__i for A >71

and there is no solution for A= 1/2. The dependence of r . on A is shown in Fig. 3 in the form of a curve
above which lies the region of pulses with maxima and below which pulses are monotonically damped. The
dependence of r, on A and r, is most conveniently obtained by a solution of Eq. (2.6) with respect to ry,,

__ re(lnrs=-1) {1+ 2(A—1Dr
n= 12—2(A~1)r [1+ V1+ (Inrs+1)2 2J

and by plotting the corresponding curves (Fig. 4a). The amplitude of the voltage pulse is found through the
substitution r'=r} in Eq. (2.2)

1 e
Uy = (1+—€) Z—Z".

For }4<A<1and rg,— =, Eq. (2.6) leads to

rer, || | T T
‘ ] 27T~ A)?

e., in this case the voltage reaches a maximum when the resistance of the
disconnect becomes equal to half the limiting value. The amplitude of the

o

! |
\.‘ ] voltage pulse then tends to the limit
\ 1 1
2 -
N— e Syane T A<t
o 1 3 A It is clear that it is impossible to obtain high voltages for A <1 because
Fig. 3 Uy~ 1.67 even for A=0.9 and r;,—~«. For A=1, r, and up in theory in-

crease without limit as ry, increases. However, it is known from experi-

49



x
; // Y4 ) A=
7 / 22 =
1 235 5 10 20 a0 0 20 °F T
Fig. 4
Tm 1
. N |
* A N P AT
22 / ‘ + 04 5 S /‘><;>& 7<\
/ \-;fco‘ g /\X& ~
16 2 43 \
fa=1 ’ N
AN
12 — a2} X N
013. ‘T\ \’Q o1 /
o4 g 1
6.4 08 12T 1 238 5 10 3 50 6 rp
Fig. 5 ' Fig. 6
ments on electrical explosion [3] that at the time of the so-called
he 5 3 _ - "current pause" the intensity of the current is in fact not zero, and,
o=z | - : s -
20 % PR consequently, the resistance of an exploding wire is always finite. If
wl AT N one takes r,=100 (see Fig. 4a), the corresponding values of the pulse
/’\_\Q- L] amplitudes will not exceed 9 (Fig. 4b). The relationship u(t) can be
5 obtained in the following manner. One determines r(t) and r'(T) by
3 A numerical integration of Eq. (2.3) and then calculates u(r) =(z'/r)/
2 - AN (r'/r)7=¢. Using this method, voltage pulses were plotted for A=1,
1 ' ry,=3, and ry =100 (Fig. 5). The time Ty during which a pulse acts
1 23 5 00 205 0 100r from its beginning until it reaches maximum value can be determined
Fig. 7 from Eq. (2.3),

{7z (7 -+n )2dr
2r si

Ty = TL .
L L —
H r3[r Inr--(4 1)rL]

The integral is not expressed in elementary functions and was calculated on a computer (Fig. 6). Itis
clear from the curves that for a fixed load resistance ry, an increase in the dimensionless energy A of
the inductive storage can both lengthen and shorten the voltage pulse (i.e., both increase and decrease the
time 7y to reach the peak). Physically, this is explained by the competition of two factors; the power in
the load grows as A increases but the total energy transferred also increases. The second factor domi-
nates for small r, and the first factor for large r1,. The total energy transferred to the load is defined
as the storage energy after subtraction of the total energy absorbed by the disconnect,

Hence, the total efficiency is

It is clear that for A 1 (i.e., for a disconnect with energy of the electrical explosion much less than the
storage energy), n; can be as close to one as desired. We note that this energy is transferred to the load
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in the asymptotic mode, i.e., in theory after an infinitely long time [in practice, after a time (L/Rpity *
(2-3W(L/R1)]. There often arises a need to transfer a given energy in a limited time. There is therefore
practical interest in the efficiency of a rapid transfer to the load in the time Ty from the beginning of a
pulse until the peak value of the energy
1 . 1
—2——LIO2 (1 — i) — Myg (1 — —r—),

2

where i, is the dimensionless value of the storage current at the time Ty. Substituting

141, fre

lﬂ_-rL ’

o == Uy

we find the efficiency for rapid transfer is
1 rg\2 1 1
n=1-— Z_A'E(l + 72;) _T(i“ 7_)

The dependence of 1 on A and ry, is given in Fig. 7 by curves from which it is clear that  cannot exceed
30%. It is interesting to note that the maximum efficiency in the transfer of energy from an inductive stor-
age to an inductive load is 25% [4].
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